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A bstrac t 

The Hilbert calculus of segments plays an important role in the axiomatic foundation of 
the Euclidean geometry, as the relationship to some fundamental agebraic structures can 
be made more apparent. An extension of the Hitbert calculus to the field of the quaternions 
U2 or biquaternions U4 leads to some new aspects on the spinor formalism. By that, a 
geometrical interpretation of the Dirac equation is obtained. Including the torsion of the 
Minkowski space (Caftan geometry), the affine connection of the spinor space U4 also 
can be interpreted with the help of a generalized Hilbert calculus. These considerations 
lead to a simple geometrical access to the nonlinear spinor theory, proposed by Ivanenko, 
Heisenberg, Diirr, etc. 

1. i n t r o d u c t i o n  

Nonl inear  relativistic field equat ions  have become  an impor tan t  tool for the 
descript ion o f  in terac t ion  p h e n o m e n a  in e lementary  part icle physics. The first 
nonl inear  general izat ion o f  the Dirac equa t ion  (h = c = 1) 

i ~ ( q ~ ,  +_ e A ~ )  = rn~ (1.1) 

where 7 "  satisfies the algebra 

7vTx + 7X7~ = 2~.X 

( t  .2) 

g~x = e~6px, ev = (1, 1, 1, - 1 )  

has been investigated by Ivanenko  (1938)  and Ivanenko  and Brodski (1957)  by 
adding the  te rm o f  the form ~ q , 3  
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In recent time, similar attempts in this direction are made by the so-called 
constructive quantum field theory (Glimm et al.  1973), where nonlinear 
generalizations of the Klein-Gordon equation 

[] q~ + rn2q? = X,I~3 

are taken into account, but our interest lies in the investigation of the spinor 
formalism. A nonlinear spinor equation 

7v~lu + 123,XT(~TXT~)~ = 0 (1.3) 

for the description of the interaction processes between the elementary par- 
ticles has been proposed by Heisenberg (Diirr, 1976). In equation (1.3) 7 ~ 
means the direct product of spin and isospin. (However, the question of the 
interpretation of metrical bispin tensors has no importance in this paper.) 
Equation (1.3) yields the following conservation laws: 

(q~3,vq01v : 0 (1.4) 

and 

(q ' 7~ '~ )~  ~ = 0 (1 . s )  

Equation (1.4) is a consequence of the Hermitean Dirac operator and represents 
the conservation of the electric charge. Equation (1.5) is sometimes connected 
with the conservation of the baryonic charge. The two conservation laws are 
obtained by a general gauge transformation 

= exp (-ix)Aq~ 
(1.6) 

A = exp (#/7) 

where X is a real gauge function and r~ a real number. The transformation, 
given by the matrix A, is known as a Touschek transformation. It has been 
shown by several authors (Rodichev, t 961 ; Braunss, 1965; Schmutzer, 1968; 
Hehl et al., 1974; Ulmer, 1975) that the nonlinear term of equation (1.3) 
represents the affine connection in the spinor formalism of a Minkowski space 
X4 with torsion (Minkowski-Cartan geometry): 

r ~  C = ~ , ( ~ v ' ~ )  (1.7)  

Fv c is induced by a parallel displacement of the vector space U4 of bispinors 
~ ,  embedded in a Minkowski-Cartan geometry, and in this case the covariant 
derivation is written in the form 

qq~ = q/iv +_ FvCq/ (1.8) 

A possible way to obtain equation (1.3) is the variation of the corresponding 
Lagrangian: 

L : ~ [~Tu(~lu -+ Fuc'4 ') -- ('7I'lu -+ "I'uFue)Tu'P] (1.9) 
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The aim of the following considerations is the investigation of the geometric, 
algebraic structure of the parallel displacement Pu c. By that, the geometric 
background of the equations (1.1) and (1.3) can be made more apparent. 

2. Basic Considerations 

A linear vector space VL(~ ) over the field of real numbers R can be equipped 
with a topology by various methods, e.g., with the aid of a norm 

g: VL x V L -~ R+ (2.1) 

where g represents a mapping of V L ([~) -~ 0~ + and R+ is the set of positive real 
numbers. In physical problems, the Euclidean norm and related generalizations 
(e.g., Riemannian geometry, Hflbert space) are most frequently used. Therefore 
we consider some algebraic relations of the Euclidean geometry in the axio- 
matic formulation given by Hilbert (see Beth, 1965). For this purpose, it should 
be pointed out that the axiomatic frame of the Euclidean geometry is founded 
by the following special relations: The axioms of connection, order, congruence, 
parallelism and continuity. According to Hitbert an area measure is obtained 
by a suitable multiplication of straight lines (the Hilbert calculus of segments), 
where the continuity axiom does not have to be used. The Hilbert calculus 
of segments makes apparent the relationship of the above axioms with some 
fundamental algebraic structures and the integral calculus. In Figure 1, we 

~A 
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Figure 1. 
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regard the points P, Q, E, A, O in a right-angular coordinate system (~, 7). 
Q--O = x and PO = x' are arbitrary straight lines, and OE = e is the unity straight 
line. A parallel displacement of  QE at the point P(QEH PA ) defines the straight 
line ~A = OA. The axioms of  the Euclidean geometry yield the ratio: 

x" e -- ~A" x '  (2.2) 

and equation (2.2) is equivalent to 
f 

xx  = e~ A = ~Ae = ~.4 (2.2a) 

~.4 = xx '  represents a measure of  the area of  the segment with the sides x and 
x' .  In Figure 2 the reversal construction of  the segment r/A = x ' x  can be verified. 

~A 

,, ~Q E 

X' 

P 

Figure 2. 

The unity straight line e = OE must be chosen on the ~ axis, and the parallel 
displacement of  PE at the point Q(QA It PE)  yields the following ratio: 

x ' :  e = ~A : x (2.3) 
which is equivalent to 

x 'x  = erlA = r~Ae = rlA (2.3a) 
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It is necessary to point out that ~A and ~?A represent straight lines again, and 
their amounts are proportional to the corresponding segments x x '  and x ' x .  
Furthermore, it is very important from the axiomatic point o f  view that the 
segments x x '  and x ' x  are constructed in a quite different way, and the rela- 
tionship to certain algebraic structures is evident: The satisfaction of  the 
commutativity taw requires ~A -- ~A = 0. The associativity law yields a 
scaling transformation x = xs  or x '  = sx': (xs)x '  = x ( sx ' )  = x sx ' .  (s must com- 
mute with x'  and x, as, e.g., x ' s  = sx' must hold.) The distributivity law is 
obtained by a translation x ~ x + ~: 

(x + X)x' = xx '  + ~ '  

This example can readily be generalized to the projective and affine geometry, 
respectively, to the affine connection in the Riemannian geometry. A further 
application is the mean value theorem of  the integral calculus. Let x '  be a 
real, continuous function over N :x '  = f (x) .  An interval I C N is given by I = 
(0 < ~ < x). There exists a real number X, E I ,  for which the relation 

x 

xf(Yc) = I f (~ )  d~ = ~A (2.4) 

is valid. 0 
In the case of  the Riemannian geometry the Hilbert calculus of  straight lines 

can only be used for infinitesimal segments, induced by a translation x =~x + 
dx. Finite parallel displacements must be interpreted in the sense of  the mean 
value theorem. The concept ofpara l ld  displacement or parallel transfer of  a 
certain object X (spinor, tensor) is induced by the definition of  the covariant 
derivation, since the partial derivation XI v is not  covariant: 

DX = Xllv dxV (2.5) 

DX = XI v dxV + Pvx  dxV 

If  the quantity X remains invariant under a parallel transfer, then the condition 
DX = 0 must hold (generalized parallelism). In general, parallel transfer is a 
path-dependent concept, and the difference DX = X(x + d x )  - X(X) does not 
vanish. The main interest of  the following considerations lies in the geometric 
and algebraic structure of  the affine connection, if;( belongs to the vector space 
U2 or U4. The Hflbert calculus of  segments is generalized to other structures, 
as the straight lines can also be interpresented as elements of  the quaternion 
field U2. In the case of  the Euclidean geometry we have observed that from 
the multiplication of  any two straight lines there results a new straight line, and 
therefore the application to other structures is possible. The quaternion field 
U2 is the only noncommutative field over R with a finite number of  basis ele- 
ments. The identification o f  the straight lines with the elements of  the quater- 
nion field U2 requires the abandonment of  the commutativity law, and the 
multiplication of  these "straight lines" may be represented in the following 
manner: 

U2(IR) x U2([~)-+ U2(I~) (2.6) 
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There exist four basis elements (o, e), satisfying the commutation rule 

ojo] = e (j = 1, 3) 
(2.7) 

ojo k - oko i = 2i~ l (j, k,  l cyclic) 

According to a fundamental theorem of Wedderburn each field with afinite 
number of elements must be commutative with respect to multiplicative 
operation. This fact is very important and must be taken into account, 
respectively, if the mapping of a linear vector space (e.g., X4) on a noncom- 
mutative field is considered. In this case, the multiplication of a vector with 
the corresponding scalar does not have to be commutative, if the field F ' ,  
basing on the vector space VL (F), is not finite. For the following, the 
Kronecker product of any linear space VL(R) with U2(R) or the biquaternion 
field U4(R) is taken into consideration: 

VL ® U2-+ U2 
(2.8) 

V L ® U4 -+ U4 

For each x v @ V L relation (2.8) yields the quantity 

x = o u ® x  u = ~ oux u (2.9) 
P 

Or 

x = % ® x u = ~ % x  u (2.9a) 
P 

As already stated, the reversal construction represents an important example 
for the fact that the multiplication of any element x '  E V}, with x, defined by 
the relation (2.9) or (2.9a) does not have to be commutative: 

V~ x (VL ® U4) - (VL ® U4) x V~, -+ U4 (2.10) 

With the help of equation (2.9a) we can form the commutation rule, satisfying 
the algebra of retation (2.10): (x '~ E V ~ , x  ~ E VL) 

%xUx '~ - x'VTux u = 3 '~ (2.1 1) 

In the following, we shall show that the Dirac equation (1.1) and the non- 
linear spinor equation (1.3) can be considered as realizations of the algebraic 
structure (2.t 1). 

3. Applications to U4 with Minkowski-Cartan Geometry 

In this section, we denote a vector space with Minkowskian geometry by 
)(4. If  torsion of X4 (Caftan geometry) is taken into consideration, the four- 
dimensional manifold with Minkowski-Cartan geometry is denoted by X4 e. 
In the case of the Dirac equation (1.1) it is sufficient to consider only the 
biquaternion field U4 on X 4. Let x v E X4 and p'U (p = 1, 4) be the momen- 
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turn of  a particle in the rest frame; then the application of the algebraic struc- 
ture (2.1 !) yields the commuta tor  

xV'y~p 'u - T~zp'Ux v = K 7  v (3.1) 

K is a constant and must be chosen to agree with physical dimensions (e.g., 
Planck's constant). In the case of  the Dirac equation we may put  K = i, and, 
since P u' = (0, 0, 0, rn), we obtain from (3.1) 

m x  v -- XU lfl  = _i~/v 

or (3.1a) 

m x  u _ xVm = i7 u 

Replacing m by the differential operator, the Dirac equation 

iTv~iv  = +-m~ 

for a free particle is obtained. The vector potential A v  can also be introduced 
by a gauge transformation of  the commuta tor  (3.1). 

The more general case is given by a torsion of  the Minkowski space X 4  c. 
The parallel transfer (affine connection in the spinor formalism) is not a com- 
mutative structure in the sense of the Hilbert calculus of  straight lines. The 
application of the relation (2.11)leads to the commutator  

xVT~P eu - % p e U x  v =,I-2Tv (3.2) 

Owing to well-known arguments (see Rodichev, 1961; Braunss, 1965; 
Schmutzer,, 1968; Hehl et al., 1974; and Ulmer, 1975) Pu e must be an 
axial vector (l#u e = - Pu e) and is defined by equation (1.7). Making use of  
the well-known representation of algebraic commutators  by differential 
operators, the nonlinear spinor equation (1.3) is obtained: 

1-27v ~lv : - T u p c u  ~ (3.3) 

Assuming that q~ and q~ differ by a transformation q~ = A g  ~, we find that A 
must agree with the already mentioned Touschek transformation, as the affine 
connection Fu c remains invariant under this transformation. The differentia- 
tion of  the commuta tor  (3.2) leads to 

. Y ^ ,  r~¢~  v, __ ,,, pc/4~,.V = 6~'TuF cu +x t u l l y  _ 7upeUav ~U.lv,~ - 0 (3.4) 

As the following relations 

x ' v . I ' [ ~  - 7 . r f ~ x "  --- o 

must be valid for each x v E X 4 ,  we find that 

cu : 0 ~ (~7u')'~I')tu : 0 (3.5) 

is valid for equation (1.3), as already stated with the help of  other means. The 
above relation (3.5) directly follows from the commuta tor  (3.2), which repre- 
sents the algebraic structure of  the nonlinear spinor theory. We should finally 
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note that the axiomatic foundation of  the geometry makes the geometric, 
algebraic background of  relativistic quantum theory more distinct. As the 
parallel transfer of  physical quantities (tensors, spinors) also plays a significant 
role in general relativity, a unified aspect of  modern field problems can be 
built up by algebraic structures. 
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